Tipos de series calculo integral

Prueba de la raíz

Este artículo trata del concepto de integral definida en cálculo. Para la integral indefinida, véase antiderivada. Para el conjunto de números, véase entero. Para otros usos, véase Integral (desambiguación).
En matemáticas, una integral asigna números a las funciones de forma que describe el desplazamiento, el área, el volumen y otros conceptos que surgen al combinar datos infinitesimales. El proceso de encontrar integrales se llama integración. Junto con la diferenciación, la integración es una operación fundamental y esencial del cálculo,[a] y sirve como herramienta para resolver problemas en matemáticas y física que implican el área de una forma arbitraria, la longitud de una curva y el volumen de un sólido, entre otros.
Las integrales enumeradas aquí son las denominadas integrales definidas, que pueden interpretarse formalmente como el área con signo de la región del plano limitada por la gráfica de una función dada entre dos puntos de la recta real. Convencionalmente, las áreas por encima del eje horizontal del plano son positivas, mientras que las áreas por debajo son negativas. Las integrales también hacen referencia al concepto de antiderivada, una función cuya derivada es la función dada. En este caso, se denominan integrales indefinidas. El teorema fundamental del cálculo relaciona las integrales definidas con la diferenciación y proporciona un método para calcular la integral definida de una función cuando se conoce su antiderivada.

Serie armónica

Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas en este sitio, es mejor verlas en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lado de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.
El último tema que discutimos en la sección anterior fue la serie armónica. En esa discusión afirmamos que la serie armónica era una serie divergente. Ahora es el momento de demostrar esa afirmación. Esta prueba también nos permitirá iniciar el camino hacia la siguiente prueba de convergencia que veremos.
Empezaremos con un problema aparentemente no relacionado. Vamos a empezar preguntando cuál es el área bajo \ ~ (f\left( x \right) = \frac{1}{x}\) en el intervalo \ ~ (\left[ {1,\infty } \right)\ ~). Desde la sección de Integrales Impropias sabemos que esto es así,
Entonces, ¿cómo nos ayuda eso a demostrar que la serie armónica diverge? Bien, recuerda que siempre podemos estimar el área dividiendo el intervalo en segmentos y luego dibujando en rectángulos y usando la suma del área de todos los rectángulos como una estimación del área real. Hagamos eso también para este problema y veamos qué obtenemos.

Prueba de la serie p

Este artículo trata del concepto de integral definida en cálculo. Para la integral indefinida, véase antiderivada. Para el conjunto de números, véase integral. Para otros usos, véase Integral (desambiguación).
En matemáticas, una integral asigna números a las funciones de forma que describe el desplazamiento, el área, el volumen y otros conceptos que surgen al combinar datos infinitesimales. El proceso de encontrar integrales se llama integración. Junto con la diferenciación, la integración es una operación fundamental y esencial del cálculo,[a] y sirve como herramienta para resolver problemas en matemáticas y física que implican el área de una forma arbitraria, la longitud de una curva y el volumen de un sólido, entre otros.
Las integrales enumeradas aquí son las denominadas integrales definidas, que pueden interpretarse formalmente como el área con signo de la región del plano limitada por la gráfica de una función dada entre dos puntos de la recta real. Convencionalmente, las áreas por encima del eje horizontal del plano son positivas, mientras que las áreas por debajo son negativas. Las integrales también hacen referencia al concepto de antiderivada, una función cuya derivada es la función dada. En este caso, se denominan integrales indefinidas. El teorema fundamental del cálculo relaciona las integrales definidas con la diferenciación y proporciona un método para calcular la integral definida de una función cuando se conoce su antiderivada.

Series telescópicas

Este artículo trata del concepto de integral definida en cálculo. Para la integral indefinida, véase antiderivada. Para el conjunto de números, véase entero. Para otros usos, véase Integral (desambiguación).
En matemáticas, una integral asigna números a las funciones de forma que describe el desplazamiento, el área, el volumen y otros conceptos que surgen al combinar datos infinitesimales. El proceso de encontrar integrales se llama integración. Junto con la diferenciación, la integración es una operación fundamental y esencial del cálculo,[a] y sirve como herramienta para resolver problemas en matemáticas y física que implican el área de una forma arbitraria, la longitud de una curva y el volumen de un sólido, entre otros.
Las integrales enumeradas aquí son las denominadas integrales definidas, que pueden interpretarse formalmente como el área con signo de la región del plano limitada por la gráfica de una función dada entre dos puntos de la recta real. Convencionalmente, las áreas por encima del eje horizontal del plano son positivas, mientras que las áreas por debajo son negativas. Las integrales también hacen referencia al concepto de antiderivada, una función cuya derivada es la función dada. En este caso, se denominan integrales indefinidas. El teorema fundamental del cálculo relaciona las integrales definidas con la diferenciación y proporciona un método para calcular la integral definida de una función cuando se conoce su antiderivada.

Acerca del autor

admin

Ver todos los artículos